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ABSTRACT
Thegenerative theory for relevanceand itsoperationalmanifestation
— the relevancemodel — are based on the premise that a single query
is used to represent an information need for retrieval. In this work,
we extend the theory and devise novel techniques for relevancemod-
eling using as set of query variations representing the same informa-
tion need. Our new approach is based on fusion at the term level, the
model level, or the document-list level. We theoretically analyze the
connections between these methods and provide empirical support
of their equivalence using TREC datasets. Speci�cally, our new ap-
proach of inducing relevance models frommultiple query variations
substantially outperforms relevance model induction from a single
querywhich is the standard practice. Our approach also outperforms
fusion over multiple query variations, which is currently one of the
best known baselines for several commonly used test collections.
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1 INTRODUCTION
One of the most fundamental and theoretically sound approaches
for inducing a rich information-need representation in the ad hoc re-
trieval task is basedon thegenerative theoryof relevance [19]. Specif-
ically, by the generative assumption for relevance, there exists a rel-
evance languagemodel that generates terms in the query and in doc-
uments relevant to the query, or more precisely, to the information
need it represents. Relevance models can be estimated using several
common techniques [1, 19, 22, 27]. The basic approaches can also be
extended and improved by combining multiple information sources;
e.g., external corpora [14], query logs [7] and entity repositories [12].

None of these prior approaches considers how to directly extend
a relevance model when multiple query variations for the same in-
formation need are available. Query variants can easily be gathered
through query reformulations from a user in a single search session,
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across multiple search sessions, through query log analysis [28, 32],
or through combinations of all of the above.
In this work, we extend the generative assumption of relevance

by assuming that a single language model can generate terms in
multiple queries representing a single information need, and explore
the theoretical and practical implications of this novel extension.
Our extended assumption leads to the formal development of several
new relevance-model estimation methods.
An important aspect of our proposed approaches is data fusion.

More speci�cally, our new relevance models can be recast to fusion
at the term level, query-model level (language-model-level), or the
document level. We formally demonstrate equivalences between
several of these methods despite appearing quite di�erent at �rst
glance. For example, some of the estimationmethods that fuse query
models are equivalent, given somemild assumptions, to a method
that performs fusion at the document level. These equivalences mo-
tivate entirely new relevance-model estimation approaches that
utilize query-model level techniques originally proposed for fusing
document lists, and which have been shown to be highly e�ective.
Contributions. Our contributions can be summarized as follows:
(1)We explore a novel task: relevancemodeling usingmultiple query
variations representing the same information need. (2) We extend
the generative assumption for relevance, and use it as a basis to for-
mally derive relevance-model-estimation methods. (3) We formally
demonstrate theoretical connections and equivalences between sev-
eral of our methods. (4) We empirically validate the performance
of our proposed approaches using three di�erent TREC datasets.
We show that models derived frommultiple queries are superior to
using a single-query-based model in every case, and demonstrate
that a wide variety of di�erent model combinations exhibit similar
performance characteristics – providing empirical evidence that our
theoretically derived equivalences also hold in practice.

2 RELATEDWORK
The two lines of work most related to ours are relevance modeling
and fusion over query variations.

2.1 RelevanceModeling
Relevancemodelingapproaches, andmoregenerally,pseudo-feedback-
based query-model induction techniques, that were proposed in
past work operate in the standard single-query retrieval setting;
e.g., [1, 6, 18–20, 22, 23, 31]. In contrast, our task is relevance mod-
eling using multiple queries that represent the same information
need. The methods we introduce are not committed to a speci�c
query-model induction technique.
UsingMultipleQueryModels. Some of ourmethods utilizemulti-
ple relevancemodels induced fromdi�erent query variations.Hence,
we next survey work on utilizing multiple query models.



ADirichlet distribution was �tted using pseudo-feedback-based
query models induced from query variants and samples of top-
retrieved documents [9]. The distribution’s mean and mode served
as the query model. We use this approach as a baseline.

Relevancemodels induced from external collections using a single
query were linearly mixed [7, 14]. One of our methods also linearly
mixes relevance models, but these are induced over a single corpus
using multiple query variations. Additional di�erence is that we
formally derive the method from an extension of the generative
relevance assumption to the case ofmultiple queries representing an
informationneed; and,we draw formal connectionswith othermeth-
ods we use for relevance modeling with multiple query variations.
The generative theory for relevance was extended by assuming

that there exist multiple relevance models that generate terms in
the query and in relevant documents [30]. In contrast, our proposed
extension is based on the assumption of a single relevance model
generating terms in di�erent queries used to represent the informa-
tion need, and in relevant documents. Retrieval scores assigned to a
document with respect to multiple relevance (query) models can be
combined using data fusion [30, 34]. We formally demonstrate the
connection between this fusion-based approach when applied using
query variations and other methods which fuse relevance models
at the query model level. As an alternative to fusing relevance mod-
els, a single relevance model was selected from those created using
samples of top-retrieved documents [33].
Rabinovich et al. [25] induce a relevance model from relevant

documents most highly ranked in a document list fused from those
retrieved by di�erent retrieval systems for the same query. One of
the methods we study is similar in that it utilizes a relevance model
induced from a fused list. However, we use no relevance feedback,
and the lists that are fused are retrieved using the same retrieval
approach but for di�erent query variations. Additional important
di�erence is that we formally connect the proposed approach with
methods which utilize query models induced from query variations.
To improve performance robustness, an initially retrieved doc-

ument list, and a document list retrieved using a relevance model
induced from the initial list, were fused [36]. In contrast to our ap-
proach,multiple querieswere not used, the generative theory to rele-
vancewas not extended and average performancewas not improved.

2.2 FusionWith Query Variations
The work of Belkin et al. [4, 5] is among the earliest to explore the
notion of fusingmultiple query variations to produce a single ranked
retrieval list. There is recent work on probabilistic fusion of lists
retrieved for query variations [26]. In contrast to ourwork, relevance
modelingwasnot addressed. Bailey et al. [3] recently proposed anew
rank-based fusion method called Rank Biased Centroids (RBC) and
showed that fusing query variations [2] in the ClueWeb12B corpus
was highly e�ective. Benham and Culpepper [8] extended the work
of Bailey et al. [3] to the TREC Robust 2004 collection, and showed
that reciprocal rank fusion [10] (RRF), and CombSUM [15] combined
with double fusion (fusion overmultiple query variants and systems)
can also produce highly e�ective results – matching the best ever
reported for that collection. We use RRF and CombSUM as baselines,
and incorporate then directly into our newly proposed methods due
to their simplicity and performance characteristics.

3 RETRIEVAL FRAMEWORK
In the standard ad hoc retrieval setting, a queryq is used to represent
an information needI for retrieval over a document corpusD. Mod-
eling the information need for retrieval is a challenging task. Indeed,
there has been a large body of work on devising representations
using various retrieval frameworks and paradigms.

The retrieval setting we address here is di�erent. Rather than hav-
ing a single queryq representing the information needI, we assume
a set Q ofm queries, q1,...,qm , each of which represents I. Accord-
ingly, the challenge becomes devising an information need repre-
sentation using the queries in Q — our main focus in what follows.

To address the information-need representation challenge, we ap-
peal to the generative framework for relevance [19]. The framework
is formally grounded and constitutes the basis for a highly e�ective
retrieval paradigm, namely, the relevance model [1, 19].

3.1 The Generative Theory for Relevance
The fundamental generative assumption for relevance is [19]:

G���������A��������� 1. Given a query q, there exists a rele-
vance languagemodel,R, that generates terms inq and in documents
relevant to q.

Once estimated, the relevance model R which serves as a repre-
sentation of I is used to rank documents by its similarity to their
induced language models [19].
The fact that relevance is determined with respect to the (un-

known) information need I and not with respect to the query q and
that an information need can be represented using various queries,
gives rise to a natural extension of the generative assumption for
relevance to the case of multiple queries:

G��������� A��������� 2. Given a set of queries Q, each rep-
resenting the information need I, there exists a relevance language
model, R, that generates the terms in these queries and in documents
relevant to I.

Given this assumption, our task becomes estimating a relevance
model,R, using a set of queriesQ. To that end, we �rst describe nota-
tional conventions that will be used throughout this section. In Sec-
tion 3.2 we describe the standard approach to estimating a relevance
model using a single query. Then, in Section 3.3,wedescribe a suite of
approaches for inducing a relevancemodel from the set of queriesQ.
Notational conventions. We use unigram language models. The
maximum likelihood estimate (MLE) of termw with respect to the
text (or text collection) x is pMLE(w |x) def= tf(w 2x )

|x | , where tf(w 2x) is
the number of occurrences ofw inx and |x | is the number of term oc-
currences inx . The probability assigned tow by aDirichlet smoothed
languagemodel induced fromx is [35]:pDir (w |x) def= tf(w 2x )+µ

|x |+µpMLE(w |D) ;
µ is the smoothing parameter. We compare language modelsM1 and
M2 using cross entropy:CE(M1 | |M2)

def
= �Õwp(w |M1) log p(w |M2);

higher values correspond to decreased similarity. Speci�cally, we
rank documents in the corpus with respect to any query model (rel-
evance models andMLEs) by the minus cross entropy between the
query model and the document Dirichlet smoothed language model.



3.2 Single Query RelevanceModels
The standard approach to estimating a relevance model R using a
query q is based on the approximation [19]:

p(w |R)⇡p(w |q). (1)
The probability of generatingw from R is approximated by the prob-
ability of “observing”w given that q’s terms have been “observed”.
Relevance model #1, RM1, is estimated using a pseudo feedback

approach. Speci�cally, let LqQL be the list of documents most highly
ranked by the query likelihood method (QL) [29] that scores docu-
mentd by

Œ
w 2qpDir (w |d). Then, RM1 is a linearmixture of language

models induced from the documents in LqQL :

p(w |RM1)⇡p(w |q) def=
’

d 2LqQL

pDir (w |d)p(d |q); (2)

p(d |q) def= pDir (q |d)Õ
d 0 2LqQL

pDir (q |d 0) (3)

is d’s normalized query likelihood.We note that using documents
in LqQL in Equation 2 is a practical approximation for using all doc-
uments in the corpus. Indeed, p(d |q) is the highest for documents in
L
q
QL by virtue of the way LqQL was created; and, p(d |q) signi�cantly

drops for documents ranked low by the initial query likelihood re-
trieval [19]. We re-visit this point below.

It is standardpractice to clippseudo-feedback-basedquerymodels,
by setting to zero the probabilities of all but the � terms assigned the
highest probability by the model [1, 35]; re-normalization is applied
to yield a valid probability distribution denoted p(·|RM1clip).
Finally, RM1clip is anchored to the original query q to ameliorate

potential query drift [1]. The result is relevance model #3 (RM3):

p(w |RM3) def= (1��)pMLE(w |q)+�p(w |RM1clip); (4)
� is a free parameter. In what follows, we use the notation R(q) to
refer to RM3 induced using Equation 4.

3.3 Multi-Query RelevanceModels
We now address the novel challenge that emerges from the retrieval
setting we address here; that is, representing the information need
using relevance modeling and multiple queries.

Given the set of queriesQ,we canuse anapproximationanalogous
to that in Equation 1 to estimate a relevance model:

p(w |R)⇡p(w |Q). (5)
In other words, the probability to generate w from the relevance
model is approximated by the probability to observew given that
the queries in Q have been observed.

Let {Qi }mi=1 be a set of random variables, each takes queries as val-
ues. Assuming that these random variables are exchangeable (order
invariant), we get by de Finetti’s representation theorem [13] that:

p(Q1=q1,...,Qm =qm )=
π
R

� m÷
i=1

p(qi |R)
�
p(R)dR.

The implication is that we can assume that the queries in Q are con-
ditionally independent given R. We next turn to describing methods
of estimating p(w |Q) so as to induce R using Equation 5.

3.3.1 Fusing�eries. A simple approach to estimating p(w |Q)
is representingQ as a single query — e.g., fusing the terms of queries

in Q — and using the relevance-model estimates from Section 3.2.
Here, we concatenate the queries (� is the concatenation operator):

qcon
def
= �qi 2Qqi ;

concatenation order has no e�ect given the exchangeability assump-
tion stated above. The resultant relevance model,ConRM, is:

p(w |RConRM )⇡p(w |Q) def= p(w |R(qcon)). (6)
As a reference comparison, we use ConMLE: an unsmoothed

maximum likelihood estimate,pMLE(·|qcon), is clipped to use � terms1
and then utilized directly for retrieval; pseudo-feedback-based rel-
evance modeling is not used. Note that long queries a�ect qcon to a
larger extent than short queries. The estimates we describe below
address this shortcoming.

3.3.2 Fusing Relevance Models. The random variables, {Qi }mi=1,
take queries of the same type (keyword queries) as values; the vari-
ables were assumed to be exchangeable. Hence, we can use a single
random variable,Q, that takes the queries in Q as values:

p̂(w |Q) def=
’
qi 2Q

p̂(w |Q=qi )p̂(Q=qi |Q). (7)

Herein, p̂ denotes an estimate for p. Equation 7 is based on the as-
sumption that givenQ,w is independent of Q; and, that p̂(Q|Q) is
a valid probability distribution:

Õ
qi 2Qp̂(Q=qi |Q)=1.

We assume that queries are drawn from Q using a uniform dis-
tribution: p̂(Q=qi |Q) def

= 1
m .2 Now, using a relevance-model esti-

mate based on Equation 1 for p̂(w |Q=qi ) yields theAriRM estimate
which linearly fuses the relevance models R(qi ):

p(w |RAriRM )⇡p̂(w |Q) def= 1
m

’
qi 2Q

p(w |R(qi )). (8)

Alternatively, using pMLE(w |qi ) as an estimate for p(w |Q = qi )
yields theAriMLE estimatewhich does not rely on pseudo feedback
and relevance modeling:

pAriMLE(w |Q) def= 1
m

’
qi 2Q

pMLE(w |qi ). (9)

If we set �=0 in Equation 4, then AriRM becomes AriMLE. In contrast
to ConMLE (see Section 3.3.1), AriMLE has no query-length bias.
There is an interesting connection between using AriMLE for re-

trieval and the CombSUMmethod for fusing retrieved document lists
[15]. CombSUM assigns document d the score:

CombSUM(d) def=
’

Li :d 2Li
Score(d ;Li ); (10)

{Li } are the document lists to be fused and Score(d ;Li ) is d’s score
in Li . Now, d’s retrieval score with respect to pAriMLE(w |Q) is:

�CE
�
pAriMLE(·|Q) | |pDir (·|d)

�
= (11)

=
1
m

’
w

’
qi 2Q

pMLE(w |qi )logpDir (w |d)

=
1
m

’
qi 2Q

’
w
pMLE(w |qi )logpDir (w |d)

1Term clipping is applied to all query models used for retrieval — see Section 4.
2Alternatively, we could estimate p(Q=qi |Q) by a measure of qi ’s representa-

tiveness of Q; e.g., its similarity to other queries in Q. We leave this for future work.



=� 1
m

’
qi 2Q

CE
�
pMLE(·|qi ) | |pDir (·|d)

�
.

That is, d’s retrieval score is rank equivalent to the sum of its cross-
entropy-based scores with respect to the queries in Q. This is es-
sentially CombSUM fusion of d 0s retrieval scores with respect to the
queries. There are, however, a few technical di�erences that set apart
AriMLE, when used for retrieval, and CombSUM. First, CombSUM
is usually applied over truncated document lists; in our case, the
top documents in a list retrieved for query qi . Furthermore, score-
normalization is applied to each list. In contrast, the implication of
the equivalences above is that a document d that contains at least
one term from a query in Q will be assigned a non-zero score; and,
scores are not normalized. Second, if one clips pAriMLE(·|Q) to use
only the terms assigned the highest probabilities, as we do in our
experiments, then the equivalences do not hold anymore.
Other aggregation approaches could easily be applied to the

arithmetic-mean based fusion of relevance models used in AriRM, or
to the MLE-based models. Here we consider two additional methods
that were applied in tasks and settings di�erent than ours.
Geometricmean. Using the geometricmeanof document language
models was shown to be an e�ective approach to represent a cluster
of similar documents [21] and to construct a geometric relevance
model from the documents most highly ranked by the query likeli-
hood model (LqQL ) [27]. The use of the geometric mean was justi�ed
using arguments from the �eld of information geometry [27]. Here,
weuse thegeometricmeanof the relevancemodels inducedusing the
queries in Q to devise theGeoRM relevance-model-based estimate:

p(w |RGeoRM )
def
= m

s ÷
qi 2Q

(p(w |R(qi ))+�); (12)

� =10�6 is a smoothing factor. Similarly,GeoMLE is the geometric
mean of the MLEs induced from the queries:

pGeoMLE(w |Q) def= m

s ÷
qi 2Q

(pMLE(w |qi )+�). (13)

We note that GeoRM and GeoMLE are not valid language models
(without further normalization) as the probabilities over terms do
not sum to 1. Yet, they can be used to rank documents in the corpus
with the cross entropy measure [21, 27].

The geometric mean used in GeoRM and GeoMLE is more conser-
vative than the arithmetic mean used in AriRM and AriMLE: a term
assigned a low probability by one of the fused language models
a�ects the geometric mean more than it a�ects the arithmetic mean.
Fitting a Dirichlet distribution. All the (unigram) language mod-
els we use are de�ned over the |V | � 1 simplex, where V is the
vocabulary used in the corpus. Thus, the language models can be
viewed as points sampled from an underlying Dirichlet distribution.

Inspired by work on �tting a Dirichlet distribution using pseudo-
feedback-based language models induced from alternations of a
query and/or by sampling pseudo relevant documents [9], we �t
a Dirichlet distribution to the relevance models R(q1),...,R(qm ). A
maximum likelihood approach is used for �tting [24]. The mean and
mode of the �tted Dirichlet distribution serve as theDirMeanRM
and DirModeRM relevance-model estimates, respectively. Simi-
larly,DirMeanMLE andDirModeMLE are the mean and mode of
a Dirichlet distribution �tted directly to the MLEs: {pMLE(·|qi )}mi=1.

3.4 Fusing Retrieved Results
Each of the relevance models R(qi ) is induced from L

qi
QL : the doc-

uments most highly ranked by the query likelihood method with
respect to qi . Obviously, some of the queries in Q are more e�ective
representations than others for retrieval over the corpusD. Hence,
the lists LqiQL are of varying e�ectiveness. To leverage the lists so as
to improve document-relevance estimates for the task of relevance
model construction, one can apply a fusion approach over the lists.
Then, a relevance model can be induced from the fused list. We now
turn to formally derive the foundations of this approach.
We use Equation 5 to estimate a relevance model. LetD be a ran-

dom variable that takes as values documents in the corpus. We can
estimate p(w |Q), and therefore p(w |R), as follows:

p(w |R)⇡p̂(w |Q) def=
’
di 2D

p̂(w |D=di )p̂(D=di |Q). (14)

The estimate is based on the assumptions thatw is independent ofQ
givenD and that p̂(D|Q) is a valid probability distribution over the
corpus:

Õ
di 2Dp̂(D=di |Q)=1. We factor the estimate p̂(D=di |Q):

p̂(D=di |Q) def=
’
qj 2Q

p̂(D=di |Q=qj )p̂(Q=qj |Q).

The assumption is that a document is independent of Q given Q.
Then, using a uniform distribution for p̂(Q=qj |Q) results in:

p(w |R) def=
’
di 2D

p̂(w |D=d) 1
m

’
qj 2Q

p̂(D=d |Q=qj ). (15)

To alleviate the computational cost of using all documents in the
corpus to estimate Equation 15, we make the following observation.
If p̂(D=d |Q=qj ) is a normalized query likelihood value (see Equa-
tion 3), then it is quite low for documents not highly ranked with
respect to qj by the query likelihood method; i.e., documents not in
L
qj
QL . This leads us to the following approximation which was also

used toderive the standardRM1. (Refer back to Section 3.2 for details.)
We set p̂(D=d |Q=qj )=0 for documents d not in LqjQL , and to the

normalized query likelihood of d with respect to qj for documents
in LqjQL . Then, we use Dirichlet smoothed document language mod-

els: p̂(w |D=d) def
= pDir (w |d). Finally, we omit random variables to

alleviate notation. The resultant relevance-model estimate is:

p(w |R) def=
’

di 2[qj L
qj
QL

pDir (w |di )
1
m

’
qj 2Q:di 2L

qj
QL

p̂(d |qj ). (16)

Equation 16 is essentially RM1 constructed from documents in
[jL

qj
QL which are highly ranked with respect to at least one query

in Q. While the weight of a document in the standard RM1 is its
normalized query likelihood with respect to a single query, here the
weight is 1

m
Õ
qj 2Q:di 2L

qj
QL

p̂(d |qj ): the average of di ’s normalized

query likelihood retrieval scores in the lists LqjQL in which it appears.
These mixture weights are presumably more e�ective than those in
the single-query case as they are induced usingmultiple queries. The
documentweight, 1

m
Õ
qj 2Q:di 2L

qj
QL

p̂(di |qj ), is rankequivalent to the

score assigned todi by fusing the lists L
qj
QL using CombSUM [15] (see

Eq. 10). We can fuse the lists LqjQL using other fusion methods. Then,



wecan linearlymix, as inRM1, theDirichlet languagemodels induced
from documents in the fused list; the normalized (fusion) scores of
documents in the fused list serve as mixture weights. Term-clipping
this relevance model and then query anchoring it as was the case for
RM3 (Section 3.2)we get ourFuseDocRM relevance-model estimate.

Finally,we note that there is an important connection between the
relevance-model estimate in Equation 16, which serves as the foun-
dation of our FuseDocRM relevance model, and the AriRM relevance-
model estimate from Equation 8. If we use RM1 rather than RM3 for
R(qi ) in AriRM, then Equation 8 becomes:

p(w |RAriRM )⇡p̂(w |Q) def= 1
m

’
qj 2Q

’
di 2L

qj
QL

pDir (w |di )p̂(di |qj );

p̂(di |qj ) isdi ’s normalized query likelihood with respect to qj . Thus,
we can arrive to Equation 16 by �ipping summations. In other words,
linearly fusing RM1s induced from the query-likelihood lists, LqjQL ,
results in the same relevance model (RM1) as that induced from a list
that is the result of fusing {LqjQL}

m
j=1 using CombSUM.

However, in practice, AriRM and FuseDocRM can be quite di�erent
due to the fact that AriRM fuses clipped relevance models, while
FuseDocRM clips a relevance model constructed from the document
list which results from fusing the LqjQL lists. If the highly ranked
documents in the fused list, rather than the entire list, are used to
induce FuseDocRM, then this further sets it apart from AriRM.3

3.5 Multiple RelevanceModel Retrieval
All the methods described thus far induce a single relevance model
that is used to rank the corpus. We now consider an alternative ap-
proach that utilizesmultiple relevancemodels formultiple retrievals.
Speci�cally, we fuse the document lists LR(q1)CE ,...L

R(qm )
CE ; these are

retrieved based on the cross entropy between relevance models (#3)
induced using the queries inQ and document languagemodels. This
approach, which can use any fusion method, is denotedMultRM.
There is a connection between (i) MultRM, which fuses lists re-

trieved in response to multiple relevance models, (ii) FuseDocRM
which fuses lists retrieved by the query likelihood model and then
induces a relevance model from the fused list that is used to rank the
corpus, and (iii) AriRMwhich fuses relevance models and uses the
resultant relevance model for ranking. Suppose that we induce RM1
for each query inQ rather than RM3 (i.e.,R(qi ) is RM1 and not RM3 as
was the case heretofore) andwedonot apply termclipping. Then, the
document ranking produced byMultRMwhen using the CombSUM
fusion method (without retrieval score normalization) is equivalent
to that attained by using the relevance model in Equation 16 for re-
trieval – the foundation of FuseDocRMwhich is equivalent toAriRM if
an unclippedRM1 is used.4 However, in practice, the retrievalmodels
are di�erent due to applying term clipping and using RM3.

4 EVALUATION
Collections, queries and retrievalmodels. Ourmain experimen-
tal setting is basedonusinghuman-createdqueryvariations (UQVs)5

3The query anchoring applied byAriRM and FuseDocRM is equivalent.
4The rankequivalence is due to the linearityof the cross entropy in its left argument.
5Publicly available at https://culpepper.io/publications/robust-uqv.txt.gz and

http://dx.doi.org/10.4225/49/5726E597B8376.

Table 1: Datasets used for experiments. ROBUST and CW12B have
3,151 (all unique) and 10,834 (including duplicates) query variations
in total. The average # of unique variations per topic for CW12B is 40

Dataset Topics Mean Title
Length

Mean Number Mean Variation
Lengthof Variations

per Topic

ROBUST 301–450 2.7 12 4.9600–700
CW12B 201–300 2.8 108 3.5
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Figure 1:Average Precision (AP) of query likelihood retrieval [29]
with TREC topic titles and with query variations for ROBUST and
CW12B. The topics are sorted in descending order based on the
resultant AP of using their titles (black solid line). A dashed vertical
line corresponds to the AP range of using query variations for a
topic. Dots mark the mean AP for variations per topic.

for the ROBUST and ClueWeb12 category B (CW12B in short) TREC
collections [2, 8]; details of the collections are provided in Table 1.
The variations for each TREC topic represent the same information
need conveyed by the topic title. Figure 1 shows that the query like-
lihood [29] retrieval performance of using these query variations
can greatly vary. (The retrieval details are provided below.)
Using human query variations allows to perform an in-depth

study of the merits of multiple-queries-based relevance modeling,
and (dis-)similarities between the suggested modeling approaches,
while “neutralizing the noise” that stems from automatic query-
variation generation. Furthermore, as discussed in Section 1, there
are several realistic scenarioswhichwouldallowhuman-basedquery
reformulations to be collected and used to build better models for
an information need, and not just a single query. Still, at the end
of this section we also present evaluation with automatically cre-
ated variations for the ClueWeb09 Cat B collection which further
demonstrates the merits of our proposed models.
We applied Krovetz stemming to queries and documents. Stop-

words from the INQUERY list were removed from queries and query
models6 but not from documents. The Indri toolkit7 was used.

For each TREC topic we use a query set Q composed of the topic
title, henceforth title query, and � (2 {1,3,5,10} for ROBUST and
2 {1,5,15,25} for CW12B) randomly sampled unique variations.
We use 20 random samples and report the average resultant perfor-
mance. We used Dirichlet smoothed document language models.
The smoothing parameter, µ, was set to Indri’s default value (2500)
in all experiments. To rank document d using a query model, we use
minus cross entropy as described in Section 3.1. FuseDocRM is the

6Relevance models assign high probabilities to stopwords which hurts retrieval
performance. Hence, stopwords are removed and the distributions are renormalized.

7http://www.lemurproject.org/indri/



Table 2: A summary of all baselines and new methods proposed
in Section 3. For each topic, the query set, Q, includes the title query
and� query variations.

Method Description

QL Query likelihood [29] using the title query.
RM3 RM3 [1] induced from the title query.

Baselines
CombSUM CombSUM [15] fusion of the QL lists retrieved for the

queries in Q.
RRF RRF [10] fusion of the QL lists retrieved for the queries in

Q.

ConMLE The unsmoothed MLE induced from the concatenation of
all queries in Q.

AriMLE/AriRM The arithmetic mean of theMLE/relevancemodels induced
from the queries in Q.

New
Models

GeoMLE/GeoRM Thegeometricmeanof theMLEs/relevancemodels induced
from the queries in Q.

Dir*MLE/Dir*RM The mean and mode of a Dirichlet model �tted to the
MLEs/relevance models induced from the queries in Q [9].

FuseDocRM The relevance model induced from a document list that re-
sults from fusing withCombSUM or RRF the lists retrieved
using QL for each of the queries in Q.

MultRM FusingwithCombSUM orRRF the document lists retrieved
using relevance models induced from each of the queries in
Q.

only method in Section 3 with no “natural” single query to use for
query anchoringwhen constructing RM3 (see Equation 4). Therefore,
we use qcon — the concatenation of all queries in Q.
Baselinesandevaluationmeasures.Wecompare theperformance
of themethods fromSection 3with that of four baselines, all ofwhich
are summarized in Table 2. The �rst two are query likelihood (QL)
[29] and Relevance Model #3 (RM3) [1]; both use only the title query.
Using these baselines allows to study the relative merits of using
multiple queries and relevance models for retrieval.

The last two baselines are based on fusion techniques, which have
been shown to be highly e�ective when applied to lists retrieved for
query variations [2, 3, 5, 8]. Speci�cally, we fuse the document lists
retrieved for each query in Q (the set of queries used to represent
a single information need) using CombSUM [15] (see Eq. 10) and RRF
(rank reciprocal fusion) [10] which is a special case of CombSUM
where Score(d ;Li ), the score of documentd in list Li , is 1

k+rank (d ;Li ) ;
rank(d ;Li ) is d’s rank in Li and k is a free parameter.8 To perform
retrieval per query q (2 Q) in these two baselines, we used a stan-
dard language-model-based approach where document d is scored
by [17]: �CE

�
pMLE(·|q) | |pDir (·|d)

�
. Note that the resultant per-query

ranking is equivalent to that induced using QL [17]. Accordingly, for
our FuseDocRM andMultRMmethods we present the performance
when using CombSUM and RRF to fuse document lists. In all cases
of fusing document lists, retrieval scores (CombSUM) or functions
of rank (RRF) are min-max normalized for each list.9
We use mean average precision (MAP) and NDCG of the top-10

documents (henceforthNDCG) as performance evaluationmeasures.
A two tailed paired t-test withp  0.05was used for testing the statis-
tical signi�cance of performance di�erences. Bonferroni correction
is applied when comparing a method with multiple baselines.
Parameterization. Unless otherwise stated, the free parameters of
all methods (ours and the baselines)were set using ten fold cross vali-
dation performed over the TREC topics. The foldswere randomly set.

8We also found that the Borda count fusion method underperforms CombSUM and
RRF. Actual results are omitted as they convey no additional insight.

9This is an additional technical di�erence that sets apart FuseDocRM and
AriRM— the latter uses sum, and not min-max, normalized query likelihood scores.

Table 3: Summary of main results. AriRM, which is consistently
one of our best-performing methods, is compared against the four
baselines using MAP. Results are shown for the maximum number
of available query variations for each collection (ROBUST,� = 10,
CW12B, � = 25). Across all folds for AriRM, average � = 0.16 and
t = 50 for ROBUST, and average � = 0.8 and t = 30 for CW12B.
The best result is boldfaced, and superscripts show statistically
signi�cant di�erences w.r.t. the numbered baselines.

1QL 2RM3 3CombSUM 4RRF AriRM

ROBUST .248 .281 .323 .319 .3301–4

CW12B .198 .198 .212 .201 .2661–4

Thus, each topic is part of a single test fold.We report the average per-
formance over all topics per datasetwhen thesewere used for testing.
MAP served as the optimization criterion in the learning phase.
All relevance models are induced from the top-50 documents in

the document list used to construct them. The number of terms � and
the query anchoring parameter � used for relevancemodel construc-
tion are set to values in {5,10,...,50} and {0,0.2,...,1}, respectively.
(In every method that uses multiple relevance models, � is set to
the same value.) For consistency with the term clipping applied to
relevancemodels, we also applied term clipping with the same value
range of � to the �nal query models used for retrieval in all the MLE-
basedmethods:ConMLE, AriMLE,GeoMLE,DirModeMLE,DirMeanMLE,
and the QL baseline; if a query (variation) or a query-model support
contained � or less terms we did not clip it. The free parameter, k ,
of RRF is set to values in {0,10, ... ,60}; 60 was the recommended
value in past work [10]. The same value learned for RRF is used in
our FuseDocRMmethod when applied with RRF.
Key Result. Table 3 presents a summary version of our key exper-
imental results. The AriRMmethod (see Eq 8) fuses the relevance
models induced from the queries in Q. AriRM substantially and sta-
tistically signi�cantly outperforms all the baselines.
Detailed Results. We now present a detailed analysis of the pro-
posed multi-query-based methods with the following goals in mind:
(i) studying empirical similarities between methods that correspond
to theoretical connections we showed in Section 3; (ii) demonstrat-
ing performance superiority with respect to single-query-based
methods; and (iii) showing competitive performance with strong,
well-known baselines (e.g., fusion of query variations [8, 16]).

We �rst see in Table 4 that increasing the number of query vari-
ations consistently improves performance. When many query vari-
ations are available for each information need, huge e�ectiveness
improvements over using the original title query are attained.
Table 4 shows that the MLE-based methods underperform in al-

most all cases the RM3-based models. The performance gaps when
using a small number of variations are quite large. Speci�cally, us-
ing a single variation in addition to the title query (� = 1) with
MLE-based models results in performance that is inferior, or statis-
tically indistinguishable, to that of the QL baseline. In contrast, our
relevance-model-based methods statistically signi�cantly outper-
form QL in these cases. The performance gaps between the MLE
and relevance model based approaches become somewhat smaller
when increasing the number of variations used. Indeed, since the
MLE-based models only use query-based term statistics, additional
human-based evidence about the information need (query variations
in our case) can help to reach performance similar to that of using



Table 4: Retrieval e�ectiveness of all methods. For each topic,� query variations are used in addition to the title query. The performance
of QL and RM3which use only the title query does not depend on� , Dirichlet �tting is useless for very small�; hence, the corresponding
numbers are not presented. Boldface: best performance in a column. Superscripts indicate (Bonferroni corrected) statistically signi�cant
di�erence with the (numbered) baselines. For all sampling-based results, the performance variance was less than �ve signi�cant digits.

ROBUST CW12B

� =1 � =3 � =5 � =10 � =1 � =5 � =15 � =25

MAP NDCG MAP NDCG MAP NDCG MAP NDCG MAP NDCG MAP NDCG MAP NDCG MAP NDCG

Baselines

1QL .248 .426 .248 .426 .248 .426 .248 .426 .198 .191 .198 .191 .198 .191 .198 .191
2RM3 .281 .438 .281 .438 .281 .438 .281 .438 .198 .192 .198 .192 .198 .192 .198 .192
3CombSUM .277 .469 .303 .507 .314 .519 .323 .533 .221 .205 .216 .210 .214 .203 .212 .203
4RRF .274 .468 .299 .504 .310 .515 .319 .528 .218 .205 .211 .200 .210 .196 .201 .197

MLE-based

ConMLE .2522–4 .4303,4 .2971,3 .4961–3 .3121,2 .5131,2 .3231,2 .5281,2 .1823,4 .1753,4 .2481–4 .2431–4 .2661–4 .2581–4 .2691–4 .2581–4
AriMLE .2542–4 .4373,4 .2941,3 .4941–4 .3101,2 .5121,2 .3211,2 .5301,2 .1813,4 .1733,4 .2421–4 .2361–4 .2621–4 .2571–4 .2671–4 .2611–4

GeoMLE .2131–4 .3651–4 .2101–4 .3531–4 .2091–4 .3531–4 .2111–4 .3551–4 .1551–4 .1411–4 .1361–4 .1281–4 .1411–4 .1341–4 .1461–4 .1381–4
DirMeanMLE – – – – .2392–4 .4113,4 .2392–4 .4083,4 – – .1843,4 .190 .1803,4 .180 .1783,4 .186
DirModeMLE – – – – .2452–4 .4243,4 .2452–4 .4313,4 – – .1863,4 .1883 .1863,4 .199 .1823,4 .194

Fusing RMs

AriRM .2901,3,4 .4841,2 .3111,2,4 .5091,2 .3241,2,4 .5241,2 .3301–4 .5341,2 .2201,2 .2131,2 .2481–4 .2401–4 .2621–4 .2581–4 .2661–4 .2591–4
GeoRM .2891,3,4 .4571 .2981,2 .4751–4 .3041,2 .4831–4 .3041–3 .4851–4 .1761–4 .1663,4 .1631–4 .1561–4 .1753,4 .1713 .1773,4 .172
DirMeanRM – – – – .2673,4 .4203,4 .2583,4 .4213,4 – – .1833,4 .199 .1711–4 .175 .1711–4 .180
DirModeRM – – – – .2251–4 .3721–4 .2141–4 .3541–4 – – .1561–4 .1603,4 .1431–4 .1623 .1341–4 .1473,4

FuseDocRM CombSUM .3001–4 .4691,2 .3191–4 .4971,2 .3261–3 .5061,2 .3301,2 .5151,2 .2251,2,4 .2161,2 .2511–4 .2441–4 .2601–4 .2541–4 .2621–4 .2541–4
RRF .2971 .4781,2 .3191,2 .5061,2 .3281,2 .5181,2 .3321,2 .5261,2 .2251,2,4 .2161,2 .2521–4 .2451–4 .2651–4 .2581–4 .2681–4 .2581–4

MultRM CombSUM .2941,3,4 .4611 .3121,2 .4901,2 .3191,2 .5031,2 .3291,2 .5171,2 .2211,2 .2131,2 .2551–4 .2441–4 .2741–4 .2521–4 .2781–4 .2551–4
RRF .2921,3,4 .4621,2 .3131–4 .4961,2 .3221,2,4 .4851,2 .3291,2 .5191,2 .2171,2 .205 .2441–4 .2261,2,4 .2771–4 .2441–4 .2901–4 .2481–4

relevance modeling. We also see that when the proposed relevance-
model-based methods use a single variation in addition to the title
query (�=1) the resultant performance transcends that of the RM3
baseline used with a single query. Almost all of the improvements
are statistically signi�cant; the improvements growwith increasing
numberofvariations.These�ndingsattests to themeritsof relevance
modeling using multiple queries based on our suggested framework.
Model and result fusion. Table 4 also shows that although stan-
dard fusion (the CombSUM and RRF baselines) at the list-level can
dramatically improve performance when multiple query variations
are available, fusing the relevance models directly (Fusing RMs) can
improve even more. A case in point, AriRM, which is the best ap-
proach among those we study for fusing relevance models at the
model level, consistently outperforms CombSUM and RRF; often, the
improvements are statistically signi�cant. This is a very important
observation as fusion over query variations yields among the best
known results for the two collections [3, 8, 16].

The FuseDocRMmethod, which induces a single relevance model
from a list fused from those retrieved for the queries in Q, out-
performs the classic CombSUM and RRF list-based fusion baselines,
especially when the number of query variants is small. With a large
number of variants, the baselines enjoy much more “human-based
evidence” about the information need, and hence, the relative merits
of pseudo-feedback-based relevance modeling becomemore mod-
erate. A similar �nding is observed when comparing CombSUM and
RRFwithMultRMwhich fuses the lists retrieved by using multiple
relevance models induced from the queries in Q.

Of particular interest are the performance-trends similarities ob-
served in Table 4 between AriMLE, FuseDocRM and MultRM when
using theCombSUMmechanism. These correspond to the theoretical
equivalences we derived between the methods, providing further
evidence to our core thesis. The observed performance di�erences
are due to implementation and parameter choices9.
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Figure 2: Average Precision (AP) of query likelihood retrieval [29]
for the TREC CW09B topic titles and query variations automatically
generated from a commercial search engine’s query log. The topics
are sorted in descending of the AP for their titles (black solid line).
A dashed vertical line corresponds to the AP range of using query
variations for a topic.Dotsmark themeanAP for variationsper topic.

Automatically Generated Query Variants. Heretofore, the eval-
uation used human-generated query variations. We now show the
results for query variations obtained from a commercial search en-
gine.Queryvariantswere generatedusingboth title anddescriptions
for topics 1-200 from TREC 2009–2012Web track. For all query vari-
ants, we retrieved 1000 documents using the QL model from the
ClueWeb09 Cat B (CW09B) collection; stopwords were removed
only from the queries only, which is consistent with all the other
settings in our previous experiments.
To automatically generate query variations we used a bipartite

query–URL click graph taken from a 10% sample of Bing click data
over several months. Sheldon et al. [28] found variations using the
randomwalk model originally described by Craswell and Szummer
[11], using a two step forward walk, which tells us what queries
would be reached if the walk started with a user’s query. Here we



Table 5: MAP results for the automatically generated query
variants; � = 10 as in Table 3. Across all folds for AriRM, average
�=0.4 and t =50.

1QL 2RM3 3CombSUM 4RRF AriRM

CW09B .172 .178 .201 .186 .2171–4

apply the same model but use a two step backward walk, which tells
us what queries were the likely starting point given that we ended
at the user query. We chose a backward walk because it performed
better in Craswell and Szummer [11], and also seemed promising
based on the analysis of a few test queries. We left hyperparameter
tuning of the randomwalk for future work. Note that for description
queries, the query is unlikely to occur in the graph, so we created
a temporary node for each description query that was connected to
any URLs found in the description query’s top-50 Bing results, and
performed the randomwalk as described above. Figure 2 summarizes
the overall performance of the resulting query variants. As there is a
temporal mismatch between the CW09B collection and the variants
generated using current search engine logs, variants which returned
no relevant documents on the test collectionwere removed.After the
cleaning process, 193 variants remained out of the 200 original topics
(two of the original topics have no TREC judgments and �ve topics
produced no valid query variants ). Our autogeneration technique
produced 29 variants per topic on average, with an average length of
3.29. To validate our initial �ndings in the new setup, we randomly
sampled � = 10 variations for each topic to construct the AriRM
model, and the sampling process was repeated 20 times. All other
settings are consistent with the experimental setup described for the
human-generated variants.
As we can see from Figure 2, one of the noticeable di�erence be-

tween automatically and human generated queries/query-variants
(Figure 1) is that the quality of the automatic query variants tends
to be lower on average. Nevertheless, high quality variants are also
being produced for many of the topics as con�rmed by Table 5:
CombSUM substantially outperforms QL and RM3.

We also see in Table 5 that our AriRMmethod statistically signi�-
cantly outperforms all four baselines. It is important to note that we
only present a proof of concept using automatically generated query
variants. This is indeed a promising result that suggests that further
research on automatically generating query variants is warranted.

5 CONCLUSIONS
We extended the generative assumption for relevance to the case
of having multiple queries representing the same information need.
Using the extended assumption, we formally derived, and drew con-
nections between, new relevance-model estimation methods which
perform fusion at the term, query-model or document level. Empir-
ical evaluation demonstrated the clear merits of our methods and
provided support to the theoretical connections we drew. Our em-
pirical goal was not to show superiority of a single model, but rather
to support our theoretical �ndings. To the best of our knowledge,
this is the �rst work that theoretically and empirically studies the
overlap of relevance modeling, fusion and query variations.
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