
Efficient Indexing Algorithms for Approximate Pattern
Matching in Text

Matthias Petri
School of of CS&IT

RMIT University and NICTA VRL
Melbourne, Victoria, 3000

matthias.petri@rmit.edu.au

J. Shane Culpepper
School of of CS&IT

RMIT University and NICTA VRL
Melbourne, Victoria, 3000

shane.culpepper@rmit.edu.au

ABSTRACT
Approximate pattern matching is an important computational prob-
lem with a wide variety of applications in Information Retrieval.
Efficient solutions to approximate pattern matching can be applied
to natural language keyword queries with spelling mistakes, OCR
scanned text incorporated into indexes, language model ranking
algorithms based on term proximity, or DNA databases containing
sequencing errors. In this paper, we present a novel approach to
constructing text indexes capable of efficiently supporting approx-
imate search queries. Our approach relies on a new variant of the
Context Bound Burrows-Wheeler Transform (k-BWT), referred to
as the Variable Depth Burrows-Wheeler Transform (v-BWT). First,
we describe our new algorithm, and show that it is reversible. Next,
we show how to use the transform to support efficient text indexing
and approximate pattern matching. Lastly, we empirically evaluate
the use of the v-BWT for DNA and English text collections, and
show a significant improvement in approximate search efficiency
over more traditional q-gram based approximate pattern matching
algorithms.

Keywords
Burrows-Wheeler Transform, Approximate Pattern Matching

1. INTRODUCTION
Approximate pattern matching is a classic problem in computer

science with a wide variety of applications [10, 13]. For example,
the role of approximate pattern matching in biological applications
has been well documented [8]. Efficient solutions to approximate
pattern matching can also be applied in a variety of Informa-
tion Retrieval applications. Examples where approximate pattern
matching can be applied in the IR domain include natural language
keyword queries with spelling mistakes [10], OCR scanned text
incorporated into indexes [10], language model ranking algorithms
based on term proximity [12], or DNA databases containing se-
quencing errors [11].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ADCS’12, December 5–6, 2012, Otago, Dunedin, NZ.
Copyright 2012 ACM 978-1-4503-1411-4/12/2012 ...$5.00.

The approximate pattern matching problem can be defined as
follows: LOCATE, COUNT, or EXTRACT all occurrences of pattern
P of length m in a text T of size n with at most k errors. If n is
not large and only a few search queries will be performed, on-line
algorithms such as agrep [26] can perform these operations in time
proportional to the length of the text. However, on-line solutions
are typically not sufficient for massive document collections, or
situations which require a large number of queries to be run on
the same collection. In these scenarios, building an index capable
of supporting approximate matching queries is desirable. In this
paper, we focus on a new approach to indexing and searching text
collections allowing errors.

One viable approach to indexing text collections allowing errors
is to use a modified self-index to support approximate text matching
[23]. Most research in this domain has focused on providing
worst case performance guarantees using a suffix array to perform
fast substring matches [3]. In contrast, inverted indexes using q-
grams can also be used, and generally perform well in practice
despite providing no worst case performance guarantees. A q-
gram index is simply an inverted index storing positions of all
distinct substrings of length q in T . The q-gram index is used as
a filtering tool to generate potential positions in T matching P .
These positions must then be verified in the text using a variety of
different edit distance based algorithms [17].

A weakness of traditional q-gram indexes is the use of fixed
text segments of length q. If q is small, the inverted files can be
very long for common q-grams, degrading performance for many
queries. However, if q is large, then the size of the index grows
at an unacceptable rate. Recently, Navarro and Salmela [18] show
that using variable length q-grams can help find the best tradeoff
between the length of the postings lists, and the total number of
“grams” that must be indexed. Unfortunately, the approach to
finding the substrings to be indexed still requires the creation of a
suffix tree, which can dominate the construction time of the index.

1.1 Our Contribution
We present a new variant of the BWT, called the variable depth

Burrows-Wheeler transform (v-BWT). We prove that the transform
is always reversible, and show how it can be used to create a
variable length q-gram partitioning for variable length q-gram
indexes without requiring a complete suffix array. We describe
how to use the v-BWT to construct a self-index, precluding the
need to explicitly represent the v-grams using postings lists. We
empirically evaluate the usefulness of our transform by comparing
the number of verifications required when performing approximate
matching on both DNA and English text. Finally, we describe
future work where we intend to apply our new approach to common
IR problems.

2. BACKGROUND AND RELATED WORK
We define a text T [0..n−1] of n symbols and a pattern P [0..m−

1] of m symbols over an alphabet Σ of size σ. We denote the
symbol $ to be lexicographically smaller than all symbols in Σ.
Without loss of generality, we require $ to be the last symbol in
T . We refer to the BWT over T as T BWT, the k-BWT transformed
text as T k-BWT and the variable depth transformed text as T v-BWT.
We defineM to be a matrix containing all lexicographically sorted
cyclic rotations of T . We similarly defineMk andMv to be the
equivalent matrix for the k-BWT and v-BWT.

2.1 Text Transformations
The BWT was originally proposed by Burrows and Wheeler [2]

as the first step in a transform based compression system. The
transform is used to permute T so symbols with similar context
are grouped together. Conceptually, the BWT creates a matrixM
consisting of all rotations of T . The rows in the matrix are then
sorted based on the lexicographical ordering. T BWT refers to the
last column ofM. T BWT is usually more compressible than T . The
BWT is reversible in O(n) time without the need of any additional
information using the following steps: (1) Recover the first column
F ofM by sorting T BWT in lexicographical order. (2) Compute the
mapping between the first F and last column L so LF (i) = j if
F [j] = L[i]. (3) Using the LF () mapping, we can recover T from
T BWT in reverse order as T [i] = T BWT[LF (j)].

One of the main problems of constructing the BWT is that
individual row comparisons in M, or the equivalent suffix sort-
ing comparisons in a suffix array construction algorithm can be
computationally expensive. Two suffixes are compared by iterating
over T starting from each respective position. In the worst case,
each suffix comparison can take O(n) time. To alleviate this
problem, Schindler [24] and Yokoo [27] independently proposed
a bounded version of the BWT, the k-BWT. The k-BWT compares
each row/suffix up to a depth of k symbols while stable sorting the
equal rows based on initial text positions. This guarantees that each
suffix comparison can be done inO(k) time. However, this implies
that two suffixes are considered equal if they share the same k-
prefix inM. All rows inM sharing the same k-prefix are grouped
together in a context group. Within a context group, rows are sorted
based on the corresponding position in T . This implies that the
suffix array positions in each context group are in monotonically
increasing order.

To recover T from T k-BWT, the boundaries of the context groups
in BWT are required as LF() only returns the correct result if
the BWT is fully sorted lexicographically. Definition 1 defines a
bitvector Dk describing the context group boundaries:

DEFINITION 1. For any 0 ≤ k < n, let Dk[0, n − 1] be a
bitvector, such that Dk[0] = 1 and, for 1 ≤ i < n,

Dk[i] =

{
0 ifMk[i][0, k − 1] =Mk[i− 1][0, k − 1]
1 ifMk[i][0, k − 1] 6=Mk[i− 1][0, k − 1]

LF() is still guaranteed to jump to the correct context group in
M corresponding to the previous symbol in T as the individual
k-groups are still sorted lexicographically [21]. Recall that with
a context group, the rows are sorted based on the initial position
in T . As T is recovered in reverse sequential order, during the
recovery of T , each k-group is processed in reverse sequential
order. Fortunately, the context group boundaries (Dk) can be
recovered from T k-BWT in O(n) time [20]. To recover T from
T k-BWT, the k-group boundaries are recovered first. The LF ()

mapping is then used to jump between context groups, while using
Dk to process each individual context group in reverse sequential
order. Interestingly, although the additional cost of recovering the
context group is asymptotically worse than in the full BWT, T
can be recovered faster from T k-BWT than from T BWT due to the
sequential access of each context group. The sequential access
results in a significant cache effect not present in the random jumps
induced by the BWT [4].

2.2 Self-Indexing
The BWT has been used in many compression systems to

increase the compressibility of the text. Additionally, the BWT is
the core of many compressed indexing schemes as there exists a
duality between the BWT and the suffix array: SA[i] = T bwt[i]−1.
The duality between T BWT and the suffix array over T allows
searching in T using only compressed representation of T BWT [5].
This type of text index is usually referred to as a self-index as T is
not required to perform search. Self-indexes support the following
operations efficiently:

COUNT(P,m): Return the number of occurrences of P in T .
LOCATE(P,m): Return all occurrences of pattern P in T .
EXTRACT(i, j): Extract T [i..j] from the self-index.

Self-indexes typically provide this functionality by allowing the
following basic operations over T BWT:

ACCESS(T BWT, i): Return T BWT[i].
RANK(T BWT, i, c): Return the number of times symbol c

occurs in T BWT[0..i− 1].
SELECT(T BWT, i, c): Return the position of the i-th

occurrence of symbol c in T BWT.

To support these operations, a wavelet tree [7] is built over T BWT

which supports all operations in O(log σ) time. Wavelet trees
over T BWT take roughly the space of the compressed representation
of T [6]. For an overview of wavelet trees refer to Navarro
[14]. The main component of all operations in self-indexes is
backward search, where all rows in M prefixed by P can be
found in O(m log σ) time by processing the pattern backwards
by calculating LF() 2m times in O(log σ) time as shown in
Equation 1.

LF(i) = LF(i, c) = C[c] + RANK(T BWT, i, c) (1)

where c is the symbol T BWT[i], and C[c] stores the number of
symbols in T BWT smaller than c. For a more detailed overview of
self-indexes refer to Navarro and Mäkinen [16] or Ferragina et al.
[6]. Similar techniques are used to allow searching in T k-BWT [21].

3. THE VARIABLE DEPTH TRANSFORM
The k-BWT sorts each suffix up to a fixed depth of k. Figure 1

shows the context size distribution for sorting depth k = 2 to
8. Note that as the sorting depth increases, the number of small
contexts increase. However, even at a depth of 8, many large
contexts groups remain which correspond to substrings in T that
have a length of 8. Instead of sorting all rows deeper, we sort only
context groups above a threshold v.

The k-BWT specifies the sorting depth k until the rows inMk are
sorted. The incomplete sorting ofMk results in rows inMk being
grouped together in context groups. Each row in an individual
context group shares the same k symbol prefix. Instead of defining
the sorting depth k, we define the maximum context group size v
inMv allowed. We continue to sort context groups with more than

10 1

10 2

10 3

10 4

10 5

10 6

2 4 6 8

Sorting Depth (k)

C
on

te
xt

G
ro

up
Si

ze
(l

og
sc

al
e)

Figure 1: Context group size (logarithmic) distribution for
different sorting depth k of the k-BWT for a 100 MB English
text file.

v rows until the resulting context groups contain at most v rows.
This implies that different parts ofMv will be sorted to different
depths as not all k-grams in T occur equally often. Figure 2 shows
an example of the v-BWT. Context groups ‘p’ and ‘$’ are sorted up
to a depth 1. Context groups ‘ay’ and ‘yay’ are sorted to depth 2
and 3 respectively.

i Dv LF F L
0 1 11 $ y a y a y a p y a y a
1 1 10 a $ y a y a y a p y a y
2 1 5 a p y a y a $ y a y a y
3 1 1 a y a y a p y a y a $ y
4 0 3 a y a p y a y a $ y a y
5 0 8 a y a $ y a y a y a p y
6 1 6 p y a y a $ y a y a y a
7 1 9 y a $ y a y a y a p y a
8 1 4 y a p y a y a $ y a y a
9 1 0 y a y a y a p y a y a $

10 0 2 y a y a p y a y a $ y a
11 0 7 y a y a $ y a y a y a p

Figure 2: v-BWT for T =yayayapyaya$ including LF mapping
and the context-group vector for threshold s = 3. The different
sorting depths are boldfaced.

The bitvectorDv describing the context group boundaries is now
defined as shown in Definition 2. Dv[i] is 0 if Dv−1[i] is 0 and the
size of the context group containing row i in the previous sorting
stage (div−1) was smaller or equal to v or if the v-prefix of row i is
equal to row i− 1. Dv[i] is 1 otherwise.

Algorithm 1 v-BWT Forward Transform of text T with threshold v
1: VBWT (T [0 . . . n− 1], v)
2: Initialize SA[0 . . . n− 1]
3: Count symbols to create B1

4: for each context group D1[i . . . j] do
5: RADIXSORT (T, SA, D1[i . . . j], v, 2)
6: end for
7: for i← 0 to n− 1 do
8: if SA[i] = 0 then
9: T v-BWT[i]← T [n− 1]

10: else
11: T v-BWT[i]← T [SA[i]− 1]
12: end if
13: end for
14: return T v-BWT

FUNCTION RADIXSORT (T, SA, D[i . . . j], v, k)

1: if j − i+ 1 ≤ v or k ≥ kmax then
2: return
3: end if
4: COUNTSORT symbols in SA[i . . . j]
5: for all symbols ∈ SA[i . . . j] do
6: Mark start of new context group in D
7: RADIXSORT (T, SA, D[i . . . j], v, k + 1)
8: end for

DEFINITION 2. For any 1 ≤ v < n, let div−1 be the size of
the context group containing row i after sorting step v − 1. Let
Dv[0, n− 1] be a bitvector, such that Dv[0] = 1 and, for 1 ≤ i <
n,

Dv[i] =


0 if Dv−1[i] = 0 and div−1 ≤ s
0 if Dv−1[i] = 0 and div−1 > s and
Mv[i][0, v − 1] =Mv[i− 1][0, v − 1]

1 otherwise

The forward transformation of the v-BWT is outlined in Algo-
rithm 1. We recursively perform radixsort for each of the context
groups until the context group size is less then our defined threshold
v. The algorithm returns the context group vector Dv , as well
as the suffix array (SA) sorted up to variable sorting depth. The
duality between the BWT and suffix arrays is used to create T v-BWT

as T v-BWT[i] = T [SA[i]− 1].
In order to bound worst-case sorting time, additional parameters

are necessary. Let kmin to be the minimum sorting depth for all
context groups and let kmax to be the maximum sorting depth.
This guarantees a worst case runtime complexity ofO(kmaxn). In
practice small values for the parameter k allow the bounded sorting
depth transform to perform faster than full suffix array construction
algorithms [4].

3.1 Transform Reversal
The k-BWT can be reversed using the bit vector Dk marking the

beginning of the context boundaries as contexts are required to be
processed in reverse sequential order. The LF() mapping is only
guaranteed to “jump" into the correct context group [21]. Similarly,
Dv can be used to reverse the v-BWT even though not all columns
are sorted to the same depth k.

LEMMA 1. The text T can be recovered from the permutation
T v-BWT using the context group boundaries Dv and the LF()
mapping.

Proof. Equation 1 counts the number of occurrences of c =
T BWT[i] in T BWT[0, i]. If i represents the last row of a context
group, the set of rows inM[0, i] is identical to the rows inMv[0, i]
as the context groups are lexicographically sorted. Therefore the
number of occurrences of any c in T v-BWT[0, i] is the same as in
T BWT[0, i]. The different sorting depths k′ and k′′ do not affect the
lexicographical order of different contexts as the sorting depth can
only affect the order within a context group. So, j = LF(i) maps
correctly between two context groups dik′ and djk′′ despite being
sorted to different depths k′ and k′′. As LF(i) must map to the
correct preceding context group as in the k-BWT, using Dv we can
process each context group in reverse sequential order to recover
T .

To recover T from T v-BWT no additional information is required
as the context boundaries Dv can be recovered from T v-BWT in
O(kmaxn) time, where kmax is the maximum sorting depth of any
context group in T v-BWT.

LEMMA 2. Dk can be recovered directly from T v-BWT using no
additional information.

Proof. Recall that context information is not needed to restore the
first k columns ofMk. Instead of recoveringMv to a depth of k,
we can recover based on the number of rows, s, with an identical
prefix Mv[1...j]. Let t be the the maximum number of rows in
Mv that have the same prefix Mv[1...j] when sorted to a depth
of j. If the number of rows t with the same prefix exceeds s at
the current sorting depth j, this context group must be sorted up to
depth j + 1. We continue recovering Mv in the current context
group until t ≤ s. The final context group recovered is Dv .

We now give an example of how to recover Dv from T v-BWT.
First, we recover F by sorting L = T v-BWT and initialize D1 to
the symbol boundaries. We also keep track of the F → L column
mapping:

D1 1 1 0 0 0 0 1 1 0 0 0 0
F $ a a a a a p y y y y y
L a y y y y y a a a $ a p
FL1 9 0 6 7 8 10 11 1 2 3 4 5

Next, for all context groups larger or equal s = 3, we recover
the next column inM using the initial FL1 mapping. We update
D2 to include the new context boundaries and use the initial FL1

mapping to create FL2[i] = FL1[FL1[i]] for context groups
larger than v.

D2 1 1 1 1 0 0 1 1 0 0 0 0
F $ a a a a a p y y y y y

$ p y y y a a a a a
L a y y y y y a a a $ a p
FL2 0 6 7 8 10

Using FL2 we recover the next column for context groups larger
than v in a similar manner:

D3 1 1 1 1 0 0 1 1 1 1 0 0
F $ a a a a a p y y y y y

$ p y y y a a a a a
$ p y y y

L a y y y y y a a a $ a p

We now haveDv as the size of all of the context groups less than
or equal to v, and can therefore be used to recover T from T v-BWT.

4. VARIABLE LENGTH Q-GRAM INDEX
A q-gram is a contiguous sequence of symbols in a text T :

T [i..`]. A q-gram index uses all q-grams in T to support ap-
proximate pattern matching over the text [15]. Traditional q-gram
indexes are based on inverted files. For each distinct q-gram qi in T ,
a list of positions of all occurrences of qi are stored. These list can
be d-gapped and compressed to reduce space. Individual inverted
files are accessed through the vocabulary, which can be represented
using a data structure such as a trie [18]. In large text collections,
q-gram indexes have a few serious limitations. First, the number of
distinct q-grams in T can grow exponentially with the size of q in
the worst case. Second, certain q-grams tend to occur much more
frequently than others.

Navarro and Salmela [18] propose a variable length q-gram
index, where each variable length q-gram is required to have a
uniform number of occurrences, and no q-gram occurs more than
s times. The index is prefix-free, so no “selected” q-gram can be
a prefix of any other q-gram in the index. To create the index,
Navarro and Salmela first construct a suffix tree over T in O(n)
time. Next the suffix tree is traversed in depth first order in
O(n) time to retrieve the vocabulary of the index by pruning the
suffix tree at nodes whose subtree contains at most s leaf nodes
corresponding to suffix positions in T . Next, the position lists are
sorted in increasing order in O(n log σ) time and compressed in
O(n) time. The total cost of constructing the index is therefore
O(n log σ + n log s).

The v-BWT can significantly simplify the construction of a
variable q-gram index. First, we create T v-BWT of T with threshold
v. In the process the following components of the q-gram index can
be created. The suffix tree partitioning of Navarro and Salmela [18]
can be accomplished using Dv since each context group contains
at most v rows. The postings lists can be obtained implicitly via
SAv , the suffix array used to sort T . Within each context group,
the suffix array positions correspond to the entries in the postings
list in the q-gram index. These lists are already sorted and do not
require the O(n log σ) sort described by Navarro and Salmela. In
fact, we perform this step implicitly while creating the partitioning.

4.1 Representing the Vocabulary
Traditional q-gram indexes consist of two main components.

The vocabulary stored as a trie, and a compressed inverted file for
each distinct indexed q-gram containing all occurrences of the q-
gram in T . To perform an approximate pattern search, a pattern is
split up into k+ 1 substrings. Next, for each substring the inverted
list is loaded by querying the vocabulary. Previously we showed
how to obtain a variable q-gram partitioning using the v-BWT. Here
we show how we can replace the vocabulary of a variable q-gram
index with a wavelet tree over T v-BWT.

The v-BWT can be used to obtain a variable length q-gram
partitioning equivalent to the index proposed by Navarro and
Salmela [18]. Instead of using a trie to store the vocabulary, we can
instead perform a backwards search using a compressed wavelet
tree over T v-BWT.

LEMMA 3. Backwards search for any substring pi can be
performed in T v-BWT as long as the number of matching rows,
[sp, ep] inMv are ≥ v.

Proof. Petri et al. [21] show that performing backwards search for
a pattern up to length k works correctly in T k-BWT as each context is
guaranteed to be sorted up to depth k. Therefore, performing k− 1
backwards probes is guaranteed to return the correct range of rows,
sp, ep, inMk for any pi of length k. Similarly, every context group

dik corresponding to a prefixMv[0..j] is sorted if there are more
than v rows in Mv prefixed by Mv[0..j] in T v-BWT. Therefore,
backwards search is guaranteed to result in the correct sp, ep in
Mv if ep− sp+ 1 ≥ v.

So, we use a wavelet tree over T v-BWT to determine ranges in
Mv which correspond to substrings pi of P . The size of the range
corresponds to the number of occurrences of pi in T . For patterns
with less than v occurrences, the range inMv is not guaranteed to
be continuous, so the i − 1 context must be used instead. When
this happens, all occurrences are still found, but the number of
verifications is not guaranteed to be minimal.

4.2 Optimal Pattern Partitioning
To search for a pattern P with at most k errors, a q-gram index

performs a filtering step whereby a string A is split into k + 1
substrings a1 . . . ak+1. For A to occur in a string B with at most
k errors, at least one substring ai must appear in B [19]. A q-
gram index is used to find all candidate positions of P in T by
partitioning P into k + 1 substrings p1 . . . pk+1 and retrieving the
positions in T for all pi. Navarro and Baeza-Yates [15] provide
a dynamic programming algorithm which calculates the optimal
partitioning of P into k + 1 pieces to minimize the number of
candidates. In the second step, a standard edit distance algorithm
is then used to verify all candidates [17].

We now show how to use the optimal pattern partitioning
algorithm proposed by Navarro and Baeza-Yates [15] and later
used by Navarro and Salmela [18] to enable approximate searching
using a wavelet tree over T v-BWT. The key intuition of Navarro and
Baeza-Yates’s algorithm is to compute all m2 possible substrings
P [i− j] and the resulting candidate list lengths in a matrix R[i, j]
of size O(m2). Dynamic programming is then used to to retrieve
the optimal partitioning by processingR inO(m2k) time [15, 18].
Using the backwards search (BWS) procedure, we compute R[i, j]:

R[i, j] =

{
|〈sp, ep〉| if BWS(P [i− j]) = |〈sp, ep〉| ≥ v
∞ otherwise

Where 〈sp, ep〉 is the range in the suffix array prefixed by P .
This range is only guaranteed to be continuous if |〈sp, ep〉| ≥ v,
as within a context group rows are not lexicographically sorted.
All substrings for which we cannot determine 〈sp, ep〉 are set to
infinity in our calculations, thus making sure they are not included
in the final partitioning of P into pij , ..pj+1,l, ...pm−1. For each
substring we retrieve the corresponding 〈sp, ep〉 ranges in order
to determine the parts of the suffix array containing the candidate
positions.

4.3 Storing Postings Lists
Traditionally, the vocabulary contains pointers (file offsets) at

which the individual postings list for the indexed strings (q-grams)
are stored. As we are using a wavelet tree to store the vocabulary,
we choose a different representation to store postings lists. Recall
that within a context group in T v-BWT, all corresponding suffix
array positions are in ascending text order. We can therefore store
a compressed version SA′v of SAv which d-gaps and compresses all
offsets in a single context group in the same manner as is often used
in postings lists for inverted indexes.

Unfortunately, the ranges 〈sp, ep〉 in SAv cannot be used to find
the corresponding position in SA′v . So, we store an additional
bitvector D′v that maps context groups in SAv to the corresponding
starting positions in SA′v . First we calculate the distance of
sp to the corresponding context group start in SAv using ` =

RANK(Dv, sp, 1) and t = SELECT(Dv, `, 1). Next we map
the context group into the compressed representation SA′v using
sp′ = SELECT(D′v, t, 1). Starting from sp′ we skip the first sp− `
encoded numbers and then retrieve the next ep−sp+1 encoded po-
sitions of 〈sp, ep〉. Note that 〈sp, ep〉 might span multiple smaller
context groups which must each contain separately compressed d-
gap lists.

The vocabulary and all auxiliary information needed to perform
optimal partitioning can be stored using Hkmin(T) space – the
cost of storing a wavelet tree over T v-BWT with a minimal sorting
depth of kmin. The text positions in SA′v use variable byte coding
which uses up to 30% more space than bit-compressed inverted
lists, but allows for faster decoding time [25]. We further store H0

compressed representations of Dv and D′v [22].

5. EXPERIMENTS

5.1 Experimental Setup
In our experiments we use two datasets. We use the first 1 GB

of a genome sequence created by concatenating the “Soft-masked"
assembly sequence of the human genome (hg19/GRCH37) and the
Dec. 2008 assembly of the cat genome (catChrV17e) in FASTA
format. We remove all comment/section separators and replaced
them with a separator token to fix the alphabet size. We call this
data set DNA. Our second data set was generated from from the
2009 Clueweb web crawl available at http://lemurproject.
org/clueweb09.php/. The first 64 WARC files in the direc-
tory Clueweb09/disk1/Clueweb09_English_1/enwp00/ were
concatenated together and null bytes in the text were replaced with
0xFF-bytes. The first 1 GB were used in our experiments which we
denote as WEB.

We use a server with 2× Intel Xeon E5640 Processors with
a 12 MB L3 cache, 144 GB of DDR3 DRAM running Ubuntu
Linux version 12.04. The g++ compiler version 4.6.3 with
the basic compile option -O3 -DNDEBUG -funroll-loop was
used. For basic succinct data structures, we use the succinct
data structure library (sdsl) available at http://github.com/
simongog/sdsl/. For suffix array construction we use the
libdivsufsort library available at http://code.google.com/
p/libdivsufsort/. In our v-BWT transform implementation,
we used the cache efficient radixsort implementation proposed
by Kärkkäinen and Rantala [9]. To compare our wavelet tree based
vocabulary, we use a Hu-Tucker front-coding based vocabulary
proposed by Brisaboa et al. [1].

5.2 Forward Transform Performance
Now we evaluate the runtime efficiency of our new transform

and compare the forward transform with the k-BWT and the full
BWT. We use the the suffix sorting algorithm implemented in
libdivsufsort to construct the full BWT efficiently. Table 1
shows the runtime performance to create T v-BWT, T k-BWT and T BWT

respectively for both test files.

Time [sec]
k-BWT v-BWT

BWT3 5 9 5 50 500 5000
DNA 63 121 253 289 224 191 138 283
WEB 89 145 258 312 262 235 209 213

Table 1: Construction time (in seconds) of v-BWT, k-BWT, and
the full BWT using divsufsort

The bounded transforms perform better for DNA than for WEB
compared to the full BWT. For DNA, constructing the k-BWT
is faster than constructing the full BWT. The v-BWT can be
constructed more efficiently for sorting depths up to 5. Note that
for v = 5, the v-BWT is “almost” identical to the full BWT, and
only contexts up to size 5 remain. For v = 50 to 5000 the v-
BWT can be constructed even more efficiently. The WEB data set
can be constructed 40% faster with the full BWT compared to DNA.
Induced suffix sorting reduces the number of suffix comparisons
required to construct the suffix array. Therefore, the number of
suffix comparisons needed is the limiting factor. Longer text
comparisons have to be performed to determine the order of two
suffix positions. The bounded transforms also perform slower for
WEB. For v = 5, the variable transform is 40% slower than the
induces suffix sorting method. As the sorting depth decreases, the
v-BWT again outperforms the full BWT.

Overall the v-BWT can be constructed efficiently. However,
we have not attempted to apply induced suffix sorting techniques
commonly used during suffix array construction to speed up the
construction process. This could potentially speed up the construc-
tion process significantly but remains future work.

5.3 Variable q-gram Index Construction
We now compare the construction time of our variable q-gram

based index to the suffix tree method of Navarro and Salmela
[18]. As described by Navarro and Salmela, we first construct a
compressed suffix tree using libsdsl. Next we perform a depth
first search traversal to determine the highest nodes in the suffix
tree that have at most v = 50 children. The ranges in the suffix
array corresponding to the marked nodes are recorded. Lastly,
the individual ranges in the suffix array are sorted. We compare
this approach to constructing an equivalent index using our v-BWT
for v = 50. The different steps required in addition to the time
required to build an index for threshold v = 50 for DNA are shown
in Table 2. Note that the table further lists the cost to construct the
vocabulary and compress the individual postings lists.

Time [sec]
Step suffix tree v-BWT

construct CST 736 -
suffix tree traversal 405 -
sort suffix array 453 -
create v-BWT - 224
build vocabulary 24
vbyte compress postings lists 30
Total 1648 278

Table 2: Construction cost comparison of the method by
Navarro and Salmela and the v-BWT for v = 50 on the DNA
data set.

As expected, the construction of the suffix tree is the main bot-
tleneck in the method of Navarro and Salmela. In fact, traversing
the suffix tree to determine the different ranges in the suffix array
for the approach is more expensive than creating the entire index
using the v-BWT transform. Sorting each range in the suffix array
in the suffix tree method is also computationally expensive, and
unnecessary when using v-BWT. Overall, the v-BWT index can be
constructed 5 times faster than the best known v-gram approach.

5.4 Variable q-gram Verifications
All q-gram based approximate pattern matching approaches use

filtering to reduce verification costs. Potential matching candidates
must still be verified using an edit distance algorithm. The goal

of the filter is to minimize the number of verifications required
to perform approximate search. We now evaluate the number
of verifications required by each indexing approach. First, we
perform 1000 approximate pattern searches for pattern lengths 20
to 50 using different error levels. The patterns were randomly
sampled from each data set. Figure 3 shows the number of
candidate positions which must be verified after pattern partitioning
is performed. For this experiment, we only compare k = 5 and
v = 50 using a wavelet tree as the vocabulary for both approaches.
For DNA, the number of positions requiring verification tend to be
higher than for WEB as the data is more uniform, and the alphabet
size is smaller. The v-BWT always outperforms classical k-BWT
partitioning. The variance in the WEB data set is higher than for
DNA, while DNA generally requires more verifications using the
k-BWT based approach. The v-BWT approach outperforms the k-
BWT approach for the DNA data set by several orders of magnitude
except for patterns of length 20 with error rates of 3 and 4. This
implies that P has to be split into 4 and 5 substrings respectively.
As the sorting depth for the k-BWT is 5, we conjecture that the
substrings being evaluated with the v-BWT are rarely longer than in
the k-BWT.

DNA WEB

10 2

10 4

10 6

10 8

20 30 40 50 20 30 40 50
Pattern Length

Po
si

tio
ns

to
ve

ri
fy

k-BWT-3
k-BWT-5
k-BWT-9
v-BWT-5
v-BWT-50
v-BWT-500

Figure 4: Number of verifications required for k-BWT for
variable k = 3, 5, 9 and v = 5, 50, 500 for 2 errors for DNA
and WEB data sets.

Next, we show how the number of verifications varies with
different sorting parameters. We choose only small k values
as the number of potential dictionary entries can, in the worst
case, grow exponentially as k increases. Similarly, we choose
the parameter v to have similar construction costs as our chosen
k values. Figure 4 shows the mean number of verifications
required for 1000 approximate pattern searches for patterns of
length 20 to 50 for variable transform parameters. The number
of verifications required using the standard fixed q-gram k-BWT
approach decreases as k increases due to the fact that longer
substrings can be matched. For k = 9, performance is similar
to that of the v-BWT for patterns of length 20. Generally, for all
k the k-BWT approach requires more verifications. The average
number of verifications required stays roughly constant for the
fixed q-gram approach whereas the mean number of verifications
decreases using the variable length q-gram approach as the length
of the pattern increases. As the pattern length increases, our
approach can match longer variable length q-grams during the
optimal partitioning phase. Longer q-grams occur less frequently.
Therefore, the number of verifications required decreases.

Errors=1 Errors=2 Errors=3 Errors=4

10 2
10 3
10 4
10 5
10 6
10 7
10 8

10 2

10 4

10 6

D
N

A
W

E
B

20 30 40 50 20 30 40 50 20 30 40 50 20 30 40 50
Pattern Length

Po
si

tio
ns

to
ve

ri
fy k-BWT

v-BWT

Figure 3: Number of verifications required for k-BWT with k = 5 and v-BWT with v = 50 for the DNA and WEB data sets.

5.5 Variable q-gram Vocabularies
Last, we evaluate the performance of a wavelet tree based

vocabulary by comparing the performance to a Hu-Tucker front
coding (HTFC) vocabulary as proposed by Brisaboa et al. [1]. We
compare the running time required by each vocabulary type to
execute the optimal partitioning algorithm with the space required
to store the vocabulary.

We use the HTFC dictionary as follows: Insert the first row of
each context group in Mk and Mv into the HTFC vocabulary. For
the k-BWT based approach, insert the suffix with length k. For
the v-BWT, insert the suffix that maximizes the longest common
prefix (LCP) of the adjacent context groups. For example, given the
context group corresponding to bba with adjacent contexts groups
ba and bbbb, insert bba. Since the sorting depth for each context
group is not stored, the unique prefix representing the context
group is calculated during insertion into the vocabulary. Inside
the HTFC vocabulary, each string is inserted into a block of size B
and compressed using front coding and Hu-Tucker coding. During
the query phase, binary search is performed over the first entries
of each block to find the candidate block the search string must
occur in. Next, the block is sequentially decompressed until the
string is found, or the next uncompressed block entry is larger
than the search string. The overall performance of the vocabulary
depends on the block size B (which determines the number of
sequential decompression steps), and the number of blocks in
the vocabulary (which depends on B and the number of strings
inserted). We modify the original HTFC of Brisaboa et al. [1]
to support prefix search by returning the first and last entry in
the vocabulary for which a given search string is a prefix. On a
successful search for a patternP , the vocabulary returns to numbers
i, j corresponding to the positions of the first and last entry in the
vocabulary prefixed byP . We then useDv , the bitvector describing
the context group boundaries, to calculate the number of times
P occurs in T by determining the i-th and j-th one bit in Dv:
sp = SELECT(Dv, i, 1) and ep = SELECT(Dv, j + 1, 1) − 1.
We can then determine the number of occurrences of P in T as
occ = ep− sp+ 1.

For the wavelet tree vocabulary we use three different Huffman
shaped wavelet trees. The first wavelet tree uses uncompressed
bitvectors (wt-bv). The second (wt-15) and third (wt-63) use
H0 compressed vectors proposed by Raman et al. [22]. By using
compressed bitvectors and a Huffman shaped wavelet tree the cost

of storing T v-BWT is roughly equal to the size of the compressed
representation of T . We determine the number of occurrences of a
pattern P by performing backwards search as described previously.
Figure 5 shows the time-space trade-offs for DNA and the v-BWT
with v = 5, 50, 500. We show the mean time in seconds per
partitioning step compared to the vocabulary size in MB.

For v = 500 the HTFC vocabulary outperforms both wavelet tree
dictionaries using compressed bitvectors (wt-15 and wt-63) while
the wavelet tree using uncompressed bitvectors is much faster, but
also uses much more space. This can be explained as follows.
For v = 500, the number of context groups is small. Therefore,
not many strings are inserted into the HTFC while the wavelet tree
always contains all rows in Mv . Searching in the HTFC vocabulary
depends on the number of strings in the vocabulary. Therefore, for
v = 500 with block sizes B = 5, 50, the HTFC vocabulary is both
smaller and roughly as fast as wt-15 and wt-63.

However, as the sorting requirements of each context group is
increased, the wavelet tree becomes more competitive in space
usage. For v = 50, more strings are inserted into the HTFC
vocabulary, requiring more space. Still, the compressed wavelet
trees are roughly twice as large as the HTFC based vocabulary.
When v = 5, the space required for the HTFC vocabulary is
larger than the wavelet tree. The wavelet tree using uncompressed
bitvectors now uses less space while allowing much faster search.
As the sorting depth is increased, the wavelet tree approach
becomes more compelling. Moreover, increasing the sorting depth
also decreases the number of verifications required. Therefore,
using a wavelet tree based vocabulary can be both space efficient
and support efficient filtering-based approximate pattern matching.

6. CONCLUSION AND FUTURE WORK
We have presented a new context based sort transformation: the

v-BWT. We show how the transform differs from previous context
sorting transforms. In addition, we show that the v-BWT can be
used to create text indexes which can be used for approximate
pattern matching. Our experimental evaluation shows that the
transform can be used to construct variable length q-gram indexes
five times faster than previous methods. We show that the number
of verifications that have to be performed using a variable q-gram
index are less than traditional fixed q-gram based indexes. We
further show that using wavelet trees over the transform output can
be used as the vocabulary component in the approximate index.

5 50 500

10 -3

10 -2.5

10 -2

10 -1.5

400 600 800 1000 1200 100 200 300 400 100 200 300 400
Space [MB]

Pa
rt

iti
on

in
g

Ti
m

e
[s

ec
]

htfc

wt-15

wt-63

wt-bv

Figure 5: Time and Space trade-offs during optimal pattern partitioning for HTFC (B = 5, 50, 500) and wavelet tree based
dictionaries for DNA using v-BWT and v = 5, 50, 500.

Future work includes: Adopting fast, induced suffix sorting
based BWT construction algorithms to construct T v-BWT; Using
the transform to construct suffix arrays on disk; and exploring the
viability of variable length q-gram indexes for a wide variety of
common IR and Bioinformatics search problems.

Acknowledgement. This work was supported in part by the
Australian Research Council and by NICTA. NICTA is funded
by the Australian Government as represented by the Department
of Broadband, Communications and the Digital Economy and the
Australian Research Council through the ICT Centre of Excellence
program.

References
[1] N. R. Brisaboa, R. Cánovas, F. Claude, M. A. Martínez-Prieto, and

G. Navarro. Compressed string dictionaries. In SEA, pages 136–147,
2011.

[2] M. Burrows and D. J. Wheeler. A block-sorting lossless data
compression algorithm. Technical Report 124, Digital Equipment
Corporation, Palo Alto, California, May 1994.

[3] H. L. Chan, T. W. Lam, W. K. Sung, S. L. Tam, and S. S. Wong.
Compressed indexes for approximate string matching. Algorithmica,
58(2):263–281, 2010.

[4] J. S. Culpepper, M. Petri, and S. J. Puglisi. Revisiting bounded context
block-sorting transformations. Software Practice and Experience, 42
(8):1037–1054, August 2012.

[5] P. Ferragina and G. Manzini. Opportunistic data structures with
applications. In FOCS, pages 390–398, 2000.

[6] P. Ferragina, R. González, G. Navarro, and R. Venturini. Compressed
text indexes: from theory to practice. Journal of Experimental
Algorithmics, 13:1.12–1.31, 2009.

[7] R. Grossi, A. Gupta, and J. S. Vitter. High-order entropy-compressed
text indexes. In SODA, pages 841–850, 2003.

[8] D. Gusfield. Algorithms on Strings, Trees, and Sequences. Cambridge
University Press, New York, New York, USA, 1997.

[9] J. Kärkkäinen and T. Rantala. Engineering radix sort for strings. In
SPIRE, pages 3–14, 2008.

[10] K. Kukich. Techniques for automatically correcting words in text.
ACM Computing Surveys, 24(4):377–439, 1992.

[11] H. Li and R. Durbin. Fast and accurate short read alignment
with Burrows-Wheeler transform. Bioinformatics, 25(14):1754–1760,
2009.

[12] D. Metzler and W. B. Croft. A markov random field model for term
dependencies. In SIGIR, pages 472–479, 2005.

[13] G. Navarro. A guided tour to approximate string matching. ACM
Computing Surveys, 33(1):31–88, 2001.

[14] G. Navarro. Wavelet trees for all. In CPM, pages 2–26, 2012.

[15] G. Navarro and R. A. Baeza-Yates. A practical q-gram index for text
retrieval allowing errors. CLEI Electron. J., 1(2), 1998.

[16] G. Navarro and V. Mäkinen. Compressed full-text indexes. ACM
Comput. Surv., 39(1), 2007.

[17] G. Navarro and M. Raffinot. Flexible Pattern Matching in Strings
– Practical on-line search algorithms for texts and biological
sequences. Cambridge University Press, 2002. ISBN 0-521-81307-7.
280 pages.

[18] G. Navarro and L. Salmela. Indexing variable length substrings for
exact and approximate matching. In SPIRE, pages 214–221, 2009.

[19] G. Navarro, R. A. Baeza-Yates, E. Sutinen, and J. Tarhio. Indexing
methods for approximate string matching. IEEE Data Eng. Bull., 24
(4):19–27, 2001.

[20] G. Nong, S. Zhang, and W. H. Chan. Computing inverse ST in linear
complexity. In CPM, pages 178–190, 2008.

[21] M. Petri, G. Navarro, J. S. Culpepper, and S. J. Puglisi. Backwards
search in context bound text transformations. In CCP, pages 82–91,
2011.

[22] R. Raman, V. Raman, and S. S. Rao. Succinct indexable dictionaries
with applications to encoding k-ary trees and multisets. In SODA,
pages 233–242, 2002.

[23] L. Russo, G. Navarro, A. Oliveira, and P. Morales. Approximate
string matching with compressed indexes. Algorithms, 2(3):1105–
1136, 2009.

[24] M. Schindler. A fast block-sorting algorithm for lossless data
compression. In J. A. Storer and M. Cohn, editors, DCC, page 469,
Los Alamitos, California, March 1997. IEEE Computer Society Press.

[25] F. Scholer, H. E. Williams, J. Yiannis, and J. Zobel. Compression of
inverted indexes for fast query evaluation. In SIGIR, pages 222–229,
2002.

[26] S. Wu and U. Manber. Fast text searching allowing errors.
Communications of the ACM, 35(10):83–91, 1992.

[27] H. Yokoo. Notes on block-sorting data compression. Electronics and
Communications in Japan, Part 3, 82(6):18–25, 1999.

